h	-1	
U		

Name	Date
------	------

Go for the Curve!

Comparing Linear and Exponential Functions

Vocabulary

Describe each type of account as simple interest or compound interest based on the scenario given. Explain your reasoning.

- 1. Andrew deposits \$300 into an account that earns 2% interest each year. After the first year, Andrew has \$306 in the account. After the second year, Andrew has \$312 in the account, and after the third year, Andrew has \$318 in the account.
- 2. Marilyn deposits \$600 in an account that earns 1.5% interest each year. After the first year, Marilyn has \$609 in the account. After the second year, Marilyn has \$618.14 in the account, and after the third year, Marilyn has \$627.41 in the account.

Problem Set

Write a function to represent each problem situation.

1. Nami deposits \$500 into a simple interest account. The interest rate for the account is 3%. Write a function that represents the balance in the account as a function of time t.

$$P(t) = P_0 + (P_0 \cdot r)t$$

$$P(t) = 500 + (500 \cdot 0.03)t$$

$$P(t) = 500 + 15t$$

2. Carmen deposits \$1000 into a simple interest account. The interest rate for the account is 4%. Write a function that represents the balance in the account as a function of time *t*.

- 3. Emilio deposits \$250 into a simple interest account. The interest rate for the account is 2.5%. Write a function that represents the balance in the account as a function of time t.
- 4. Vance deposits \$1500 into a simple interest account. The interest rate for the account is 5.5%. Write a function that represents the balance in the account as a function of time t.
- 5. Perry deposits \$175 into a simple interest account. The interest rate for the account is 4.25%. Write a function that represents the balance in the account as a function of time t.
- 6. Julian deposits \$5000 into a simple interest account. The interest rate for the account is 2.75%. Write a function that represents the balance in the account as a function of time t.

Sherwin deposits \$500 into a simple interest account. The interest rate for the account is 3.75%. The function P(t) = 500 + 18.75t represents the balance in the account as a function of time. Determine the account balance after each given number of years.

7. 3 years

$$P(t) = 500 + 18.75t$$

$$P(3) = 500 + 18.75(3)$$

$$P(3) = 556.25$$

In 3 years, the account balance will

be \$556.25.

9. 10 years

10. 15 years

8. 2 years

Name _

Date __

11. 50 years

12. 75 years

Hector deposits \$400 into a simple interest account. The interest rate for the account is 5.25%. The function P(t) = 400 + 21t represents the balance in the account as a function of time. Determine the number of years it will take for the account balance to reach each given amount.

13. \$505

$$P(t) = 400 + 21t$$
$$505 = 400 + 21t$$

$$105 = 21t$$

$$5 = t$$

It will take 5 years for the account balance to reach \$505.

15. \$1450

16. \$2500

14. \$610

17. double the original deposit

18. triple the original deposit

Write a function to represent each problem situation.

19. Ronna deposits \$500 into a compound interest account. The interest rate for the account is 4%.

$$P(t) = P_0 \cdot (1 + r)^t$$

$$P(t) = 500 \cdot (1 + 0.04)^t$$

$$P(t) = 500 \cdot 1.04$$

20. Leon deposits \$250 into a compound interest account. The interest rate for the account is 6%.

21. Chen deposits \$1200 into a compound interest account. The interest rate for the account is 3.5%.

22. Serena deposits \$2700 into a compound interest account. The interest rate for the account is 4.25%.

23. Shen deposits \$300 into a compound interest account. The interest rate for the account is 1.75%.

24. Lea deposits \$450 into a compound interest account. The interest rate for the account is 5.5%.

Name _ Date __

Cisco deposits \$500 into a compound interest account. The interest rate for the account is 3.25%. The function $P(t) = 500 \cdot 1.0325^t$ represents the balance in the account as a function of time. Determine the account balance after each given number of years.

25. 2 years

 $P(t) = 500 \cdot 1.0325^t$

 $P(2) = 500 \cdot 1.0325^2$

 $P(2) \approx 533.03$

In 2 years, the account balance will

be \$533.03.

27. 15 years

28. 20 years

29. 50 years

30. 65 years

Mario deposits \$1000 into a compound interest account. The interest rate for the account is 5%. The function $P(t) = 1000 \cdot 1.05^t$ represents the balance in the account as a function of time. Use a graphing calculator to estimate the number of years it will take for the account balance to reach each given amount.

31. \$1500

32. \$4000

It will take about 8.3 years for the account balance to reach \$1500.

33. \$6000

34. \$10,000

Use the simple and compound interest formula to complete each table. Round to the nearest cent.

37. Teresa has \$300 to deposit into an account. The interest rate available for the account is 4%.

Quantity	Time	Simple Interest Balance	Compound Interest Balance
Units	years	dollars	dollars
Expression	t	300 + 12 <i>t</i>	300 · 1.04 ^t
	0	300.00	300.00
	2	324.00	324.48
	6	372.00	379.60
	10	420.00	444.07

38. Ye has \$700 to deposit into an account. The interest rate available for the account is 6%.

Quantity	Time	Simple Interest Balance	Compound Interest Balance
Units			
Expression			
	0		
	3		
	10		
	20		

Name ______ Date _____

39. Pablo has \$1100 to deposit into an account. The interest rate available for the account is 3.5%.

Quantity	Time	Simple Interest Balance	Compound Interest Balance
Units			
Expression			
	0		
	5		
	10		
	30		

40. Ty has \$525 to deposit into an account. The interest rate available for the account is 2.5%.

Quantity	Time	Simple Interest Balance	Compound Interest Balance
Units			
Expression			
	0		
	10		
	20		
	50		

41. Xavier has \$2300 to deposit into an account. The interest rate available for the account is 3.75%.

Quantity	Time	Simple Interest Balance	Compound Interest Balance
Units			
Expression			
	0		
	2		
	5		
	15		

42. Denisa has \$100 to deposit into an account. The interest rate available for the account is 6.25%.

Quantity	Time	Simple Interest Balance	Compound Interest Balance
Units			
Expression			
	0		
	5		
	15		
	30		

Name _

Date _

Downtown and Uptown Graphs of Exponential Functions

Vocabulary

Define the term in your own words.

1. horizontal asymptote

Problem Set

Write a function that represents each population as a function of time.

1. Blueville has a population of 7000. Its population is increasing at a rate of 1.4%.

$$P(t) = P_0 \cdot (1 + r)^t$$

$$P(t) = 7000 \cdot (1 + 0.014)^t$$

$$P(t) = 7000 \cdot 1.014^t$$

2. Youngstown has a population of 12,000. Its population is increasing at a rate of 1.2%.

3. Greenville has a population of 8000. Its population is decreasing at a rate of 1.75%.

4. North Park has a population of 14,000. Its population is decreasing at a rate of 3.1%.

6. Springfield has a population of 11,500. Its population is decreasing at a rate of 1.25%.

Waynesburg has a population of 16,000. Its population is increasing at a rate of 1.5%. The function $P(t) = 16,000 \cdot 1.015^t$ represents the population as a function of time. Determine the population after each given number of years. Round your answer to the nearest whole number.

8. 3 years

10. 10 years

7. 1 year

 $P(t) = 16,000 \cdot 1.015^t$

 $P(1) = 16,000 \cdot 1.015^{1}$

P(1) = 16,240

The population after 1 year will be 16,240.

9. 5 years

12. 50 years

Name _

Date _

Morristown has a population of 18,000. Its population is decreasing at a rate of 1.2%. The function, $P(t) = 18,000 \cdot 0.988^t$ represents the population as a function of time. Use a graphing calculator to estimate the number of years it will take for the population to reach each given amount.

13. 17,000

14. 15,000

It will take about 4.7 years for the population to reach 17,000.

15. half

16. one-third

17. 0

18. 10,000

Complete each table and graph the function. Identify the x-intercept, y-intercept, asymptote, domain, range, and interval(s) of increase or decrease for the function.

19.
$$f(x) = 2^x$$

© 2012 Carnegie Learning

х	f(x)
-2	<u>1</u> 4
-1	1/2
0	1
1	2
2	4

x-intercept: none

y-intercept: (0, 1) asymptote: y = 0

domain: all real numbers

range: y > 0

interval(s) of increase or decrease: increasing over the entire domain

х	f(x)
-2	
-1	
0	
1	
2	

21. $f(x) = \frac{1}{3}^x$

х	f(x)
-2	
-1	
0	
1	
2	

Name _ Date_

22. $f(x) = \frac{1}{4}^x$

х	f(x)
-2	
-1	
0	
1	
2	

23. $f(x) = -2 \cdot 2^x$

х	f(x)
-2	
-1	
0	
1	
2	

x	f(x)
-2	
-1	
0	
1	
2	

Name _ Date _

Let the Transformations Begin! **Translations of Linear and Exponential Functions**

Vocabulary

Match each definition to its corresponding term.

- 1. the mapping, or movement, of all the points of a figure in a plane according to a common operation
- 2. a type of transformation that shifts the entire graph left or right
- **3.** a function that can be described as the simplest function of its type
- **4.** a type of transformation that shifts the entire graph up or down
- 5. the variable on which a function operates
- 6. notation that uses ordered pairs to describe a transformation on a coordinate plane

- A basic function
- **B** transformation
- C vertical translation
- **D** coordinate notation
- E argument of a function
- F horizontal translation

Rewrite each function g(x) in terms of the basic function f(x).

1.
$$f(x) = x$$

$$g(x) = x + 4$$

$$g(x) = f(x) + 4$$

2.
$$f(x) = x$$

$$g(x) = x - 7$$

3.
$$f(x) = x$$

$$g(x) = x - 8$$

4.
$$f(x) = 3^x$$

$$g(x) = 3^x + 1$$

5.
$$f(x) = 3^x$$

$$g(x)=3^x+2$$

6.
$$f(x) = 4^x$$

$$g(x) = 4^x - 6$$

7.
$$f(x) = x$$

$$g(x)=x+8$$

$$(x, y) \rightarrow (x, y + 8)$$

9.
$$f(x) = x$$

$$g(x)=x-4$$

10.
$$f(x) = 4^x$$

8. f(x) = x

$$g(x)=4^x-1$$

g(x)=x+9

11.
$$f(x) = 4^x$$

$$g(x)=4^x+6$$

12.
$$f(x) = 3^x$$

$$g(x) = 3^x - 5$$

Rewrite each function g(x) in terms of the basic function f(x).

13.
$$f(x) = 3^x$$

$$g(x) = 3^{(x+1)}$$

$$g(x) = 3^{(x+1)} = f(x+1)$$

14.
$$f(x) = 3^x$$

$$g(x) = 3^{(x+5)}$$

15.
$$f(x) = 2^x$$

$$g(x) = 2^{(x-1)}$$

16.
$$f(x) = 2^x$$

$$g(x) = 2^{(x-9)}$$

17.
$$f(x) = 2x$$

$$g(x) = 2(x - 3)$$

18.
$$f(x) = 2x$$

$$g(x)=2(x+4)$$

Represent each horizontal translation, g(x), using coordinate notation.

19.
$$f(x) = 3^x$$

$$g(x) = 3^{(x-2)}$$

$$(x, y) \rightarrow (x + 2, y)$$

20.
$$f(x) = 3^x$$

$$g(x)=3^{(x+2)}$$

21.
$$f(x) = 4^x$$

$$g(x) = 4^{(x+1)}$$

22.
$$f(x) = 4^x$$

$$g(x)=4^{(x-3)}$$

23.
$$f(x) = 3x$$

$$g(x) = 3(x-1)$$

24.
$$f(x) = 3x$$

$$g(x)=3(x+1)$$

Describe each graph in relation to its basic function.

- **25.** Compare f(x) = (x) + b when b < 0 to the basic function h(x) = x. The graph of f(x) is b units below the graph of h(x).
- **26.** Compare $f(x) = b^{x-c}$ when c > 0 to the basic function $h(x) = b^x$.
- **27.** Compare f(x) = (x b) when b > 0 to the basic function h(x) = x.
- **28.** Compare $f(x) = b^{x-c}$ when c < 0 to the basic function $h(x) = b^x$.
- **29.** Compare $f(x) = b^x + k$ when k > 0 to the basic function $h(x) = b^x$.
- **30.** Compare f(x) = (x b) when b < 0 to the basic function h(x) = x.

Each coordinate plane shows the graph of f(x). Sketch the graph of g(x).

31.
$$g(x) = f(x) + 2$$

© 2012 Carnegie Learning

32.
$$g(x) = f(x) + 4$$

35.
$$g(x) = f(x + 3)$$

37.
$$g(x) = f(x) + 5$$

34.
$$g(x) = f(x - 3)$$

36.
$$g(x) = f(x - 4)$$

38.
$$g(x) = f(x + 5)$$

Write the equation of the function given each translation.

39.
$$f(x) = x$$

Vertical translation up 2 units

$$g(x) = x + 2$$

41.
$$f(x) = 3^x$$

Horizontal translation right 4 units

42.
$$f(x) = 2^x$$

40. f(x) = x

Horizontal translation left 6 units

Vertical translation down 5 units

43.
$$f(x) = 3^x$$

Vertical translation down 5 units

44.
$$f(x) = 4x$$

Horizontal translation right 3 units

Each graph shows the function g(x) as a translation of the function f(x). Write the equation of g(x).

45.

$$g(x)=x-3$$

46.

48.

49.

50.

LESSON 5.4 Skills Practice

Name __

Take Some Time to Reflect Reflections of Linear and Exponential Functions

Vocabulary

Define each term in your own words.

- 1. reflection
- 2. line of reflection

Problem Set

Rewrite each function g(x) in terms of the basic function f(x).

1.
$$f(x) = 3^x$$

$$g(x) = -(3^x)$$

$$g(x) = -f(x)$$

2.
$$f(x) = 3^x$$

$$g(x)=3^{-x}$$

3.
$$f(x) = 4^x$$

$$g(x) = -(4^x)$$

4.
$$f(x) = 4^x$$

$$g(x)=4^{-x}$$

5.
$$f(x) = 2^x + 4$$

$$g(x)=2^{-x}+4$$

6.
$$f(x) = 2^x - 1$$

$$g(x)=-(2^x-1)$$

Date _

Represent each reflection using coordinate notation. Identify whether g(x) is a reflection about a horizontal line of reflection or a vertical line of reflection.

7.
$$f(x) = 2^x$$

$$g(x) = -(2^x)$$

$$(x, y) \rightarrow (x, -y)$$

g(x) is a horizontal reflection about y = 0.

9.
$$f(x) = 5x$$

$$g(x) = -(5x)$$

10.
$$f(x) = 5x$$

8. $f(x) = 2^x$ $g(x)=2^{-x}$

$$g(x) = 5(-x)$$

11.
$$f(x) = 3^x + 7$$

$$g(x) = 3^{-x} + 7$$

12.
$$f(x) = 4^x - 3$$

$$g(x) = -(4^x - 3)$$

Each coordinate plane shows the graph of f(x). Sketch the graph of g(x).

13.
$$g(x) = -f(x)$$

14.
$$g(x) = f(-x)$$

Name _ Date_

15.
$$g(x) = f(-x)$$

16.
$$g(x) = -f(x)$$

17.
$$g(x) = -f(x)$$

18.
$$g(x) = f(-x)$$

Write a function, g(x), to describe each reflection of f(x).

19.
$$f(x) = 3^x$$

20.
$$f(x) = 4^x$$

Reflection about the horizontal line y = 0.

$$g(x) = -3^x$$

Reflection about the vertical line x = 0.

21.
$$f(x) = -12x$$

22.
$$f(x) = 7x$$

Reflection about the vertical line x = 0.

Reflection about the horizontal line y = 0.

23.
$$f(x) = 2^x + 9$$

24.
$$f(x) = -8^x + 1$$

Reflection about the horizontal line y = 0.

Reflection about the vertical line x = 0.

Write an equation for g(x) given each transformation. Sketch the graph of g(x).

25.
$$f(x) = 5^x$$

26.
$$f(x) = 5^x$$

g(x) is a reflection of f(x) over the line y = 0.

g(x) is a reflection of f(x) over the line x = 0.

$$g(x) = -5^x$$

Name_

Date _

27.
$$f(x) = 3^x$$

g(x) is a translation of f(x) up 2 units.

g(x) is a translation of f(x) right 3 units.

29.
$$f(x) = 4^x$$

© 2012 Carnegie Learning

g(x) is a translation of f(x) down 4 units.

30.
$$f(x) = 3^x$$

g(x) is a translation of f(x) left 5 units.

Identify the transformation required to transform f(x) to g(x) as shown in each graph.

31.

32.

g(x) is a reflection of f(x) over the line x = 0.

33.

34.

Name _

Date _

35.

36.

Identify the transformation required to transform each f(x) to g(x).

37.
$$f(x) = 8^x$$

$$g(x) = -(8^x)$$

38.
$$f(x) = 9^x$$

$$g(x) = 9^{-x}$$

g(x) is a reflection of f(x) over the line y = 0.

39.
$$f(x) = 8^x$$

$$g(x)=8^x-5$$

40.
$$f(x) = 3^x$$

$$g(x)=3^{x-1}$$

41.
$$f(x) = 10x$$

© 2012 Carnegie Learning

$$g(x) = 10x + 2$$

42.
$$f(x) = -12x$$

$$g(x) = -12(x+1)$$

LESSON 5.5

Skills Practice

Name _ Date.

Radical! Because It's Cliché! **Properties of Rational Exponents**

Vocabulary

Match each definition to its corresponding term.

- **1.** the number a in the expression $\sqrt[q]{a}$
- A cube root

2. the number b when $b^3 = a$

- **B** index
- 3. the exponent $\frac{1}{n}$ in the expression $a^{\frac{1}{n}}$
- **C** *n*th root
- **4.** the number *n* in the expression $\sqrt[n]{a}$
- **D** radicand

5. the number *b* when $b^n = a$

E rational exponent

Problem Set

Write each expression as a single power.

1.
$$\frac{10^5}{10^8}$$

2.
$$\frac{10^0}{10^4}$$

$$\frac{10^5}{10^8} = 10^{5-8} = 10^{-3}$$

3.
$$\frac{10^2}{10^5}$$

© 2012 Carnegie Learning

4.
$$\frac{X^4}{X^9}$$

5.
$$\frac{5^3}{5^{10}}$$

6.
$$\frac{y^2}{y^8}$$

7.
$$\sqrt[3]{216} =$$

$$\sqrt[3]{216} = 6$$

9.
$$\sqrt[3]{-125} =$$

11.
$$\sqrt[3]{729} =$$

Evaluate each expression.

13.
$$\sqrt[5]{32} = \sqrt[5]{32} = 2$$

17.
$$\sqrt[7]{-128} =$$

Write each radical as a power.

19.
$$\sqrt[4]{15}$$

$$\sqrt[4]{15} = 15^{\frac{1}{4}}$$

21.
$$\sqrt[4]{31}$$

8.
$$\sqrt[3]{64} =$$

10.
$$\sqrt[3]{-343} =$$

12.
$$\sqrt[3]{-8} =$$

14.
$$\sqrt[4]{625} =$$

16.
$$\sqrt[5]{-1024} =$$

18.
$$\sqrt[5]{-243} =$$

20.
$$\sqrt[3]{5}$$

22.
$$\sqrt[3]{X}$$

Name ___

Date _

Write each power as a radical.

25. $12^{\frac{1}{3}}$

26. $7^{\frac{1}{5}}$

 $12^{\frac{1}{3}} = \sqrt[3]{12}$

27. $18^{\frac{1}{4}}$

28. $a^{\frac{1}{2}}$

29. $d^{\frac{1}{5}}$

30. $c^{\frac{1}{6}}$

Write each expression in radical form.

31. $5^{\frac{2}{3}}$

32. $8^{\frac{2}{5}}$

 $5^{\frac{2}{3}} = \sqrt[3]{5^2}$

33. $18^{\frac{3}{4}}$

34. $x^{\frac{3}{5}}$

35. $y^{\frac{4}{3}}$

36. $m^{\frac{5}{2}}$

Write each expression in rational exponent form.

37.
$$\sqrt[4]{6^3}$$
 $\sqrt[4]{6^3} = 6^{\frac{3}{4}}$

38.
$$\sqrt[5]{8^4}$$

39.
$$\sqrt[3]{12^2}$$

40.
$$\sqrt{n^5}$$

41.
$$\sqrt[4]{p^7}$$

42.
$$\sqrt[5]{m^3}$$

h	
w.	-10/

Name Date _	
-------------	--

Checkmate!

Solving Exponential Functions

Problem Set

Complete each table. Write a function that represents the data in the table and explain how you determined your expression.

1.

© 2012 Carnegie Learning

х	f(x)	Expression
0	1	3º
1	3	3 ¹
2	9	3 ²
3	27	3 ³
4	81	34
5	243	3 ⁵
Х	3 ^x	

2.

x	f(x)	Expression
0	5	40 + 5
1	9	
2	21	
3	69	
4	261	
5	1029	
Х		

The exponents of the expressions in the third column equal x. So, f(x) = 3x.

3.

x	f(x)	Expression
0	-1	-20
1	-2	
2	-4	
3		
4		
5		
Х		

4.

x	f(x)	Expression
-2	$-\frac{1}{2}$	-2-1
-1	-1	
0	-2	
1		
2		
3		
х		

5.

х	f(x)	Expression
0	$-\frac{1}{25}$	-5^{-2}
1	$-\frac{1}{5}$	
2	-1	
3		
4		
5		
Х		

6.

х	f(x)	Expression
0	16	24
1	8	
2	4	
3		
4		
5		
х		

Name _

Graph each function.

7.
$$f(x) = 3^x$$

8.
$$f(x) = 8^{-x}$$

9.
$$f(x) = 5 \cdot 2^{-x}$$

10.
$$f(x) = 2 \cdot 3^x$$

12.
$$f(x) = -3^{x+2}$$

Use the intersection feature of your graphing calculator to answer each question.

- **13.** For the function $f(x) = 6^{x-1}$ determine the value of x for which f(x) = 7776. For the function $f(x) = 6^{x-1}$, f(x) = 7776 when x = 6.
- **14.** For the function $f(x) = -4^{x+2}$ determine the value of x for which f(x) = -4096.
- **15.** For the function $f(x) = 5^{-x+1}$ determine the value of x for which f(x) = 625.
- **16.** For the function $f(x) = 2^{x+4}$ determine the values of x for which f(x) < 128.
- **17.** For the function $f(x) = -3^{x+1}$ determine the values of x for which f(x) > -9.
- **18.** For the function $f(x) = 5^{x+2}$ determine the values of x for which f(x) = 15,625.

Name ___

Date_

Solve each exponential equation for x.

19.
$$4^x = 256$$

$$4^{x} = 256$$

$$4^4 = 256$$

$$x = 4$$

20.
$$6^{3x} = 216$$

21.
$$2^{5-x} = \frac{1}{16}$$

22.
$$3^{-2x} = \frac{1}{729}$$

23.
$$4^{x+3} = 4$$

24.
$$\frac{1}{5^{x+4}} = 625$$

25.
$$-6^{x-2} = \frac{1}{-1296}$$

26.
$$\frac{1}{2^{x-6}} = \frac{1}{4}$$

© 2012 Carnegie Learning

For each pair of expressions, determine whether the second expression is an equivalent form of the first expression.

27.
$$2^{s-1}$$
 $\frac{1}{2}(2)^2$ $2^{-1} \cdot 2$

28.
$$3^{x+1}$$
 $\frac{1}{3}(3)^x$

30.
$$5^{2x-1}$$
 $\frac{1}{5}(10)^x$

31.
$$4(64)^x$$
 4^{3x+1}

32.
$$\frac{1}{2} \left(\frac{1}{8} \right)^x$$
 2^{-3x-1}

Write the exponential function represented by the table of values.

33.

х	У
0	2
1	1
2	1/2
3	1 / ₄

x	У
0	1
2	25
4	625
6	15625

$$f(x) = a \cdot b^x$$

$$f(x) = 2 \cdot b^x$$

$$1 = 2 \cdot b^1$$

$$\frac{1}{2} = k$$

$$f(x) = 2\left(\frac{1}{2}\right)^x$$

Name _

Date	
_ Date	

35.

х	У
0	1
1	<u>3</u>
2	<u>9</u> 16
3	<u>27</u> 64

36.

x	у
0	-1
2	-4
4	-16
6	-64

37.

x	У
0	3
3	<u>1</u> 9
6	<u>1</u> 243
9	<u>1</u> 6561

38.

x	У
0	-2
1	$-\frac{1}{2}$
2	$-\frac{1}{8}$
3	$-\frac{1}{32}$