Name	_ Date

Slide, Flip, Turn: The Latest Dance Craze? Translating, Rotating, and Reflecting Geometric Figures

Vocabulary

Match each definition to its corresponding term.

1. rotation

a. a line over which a figure is reflected so that corresponding points are the same distance from the line

2. point of rotation

b. the angle measure by which a geometric figure is rotated about the point of rotation

3. angle of rotation

c. a rigid motion that turns a figure about a fixed point for a given angle and given direction

4. reflection

d. a rigid motion that "flips" a figure over a given line of reflection

5. line of reflection

e. the fixed point about which a geometric figure is rotated during a rotation

Transform each given geometric figure on the coordinate plane as described.

1. Translate trapezoid ABCD 11 units to the right.

2. Translate triangle *EFG* 8 units up.

3. Rotate rectangle *HJKL* about the origin 90° counterclockwise.

4. Rotate triangle *MNP* about the origin 180° counterclockwise.

5. Rotate trapezoid *QRST* about the origin 90° counterclockwise.

6. Rotate parallelogram *WXYZ* about the origin 180° counterclockwise.

7. Reflect triangle ABC over the y-axis.

8. Reflect parallelogram *DEFG* over the *x*-axis.

9. Reflect trapezoid *HJKL* over the *x*-axis.

10. Reflect quadrilateral *MNPQ* over the *y*-axis.

Name	Date

Determine the coordinates of each translated image without graphing.

11. The vertices of triangle ABC are A (5, 3), B (2, 8), and C (-4, 5). Translate the triangle 6 units to the left to form triangle A' B' C'.

The vertices of triangle A' B' C' are A' (-1, 3), B' (-4, 8), and <math>C' (-10, 5).

- **12.** The vertices of rectangle *DEFG* are D(-7, 1), E(-7, 8), F(1, 8), and G(1, 1). Translate the rectangle 10 units down to form rectangle D' E' F' G'.
- **13.** The vertices of parallelogram HJKL are H(2, -6), J(3, -1), K(7, -1), and L(6, -6). Translate the parallelogram 7 units up to form parallelogram H' J' K' L'.
- **14.** The vertices of trapezoid MNPQ are M(-6, -5), N(0, -5), P(-1, 2), and Q(-4, 2). Translate the trapezoid 4 units to the right to form trapezoid M' N' P' Q'.
- **15.** The vertices of triangle RST are R (0, 3), S (2, 7), and T (3, -1). Translate the triangle 5 units to the left and 3 units up to form triangle R' S' T'.
- **16.** The vertices of quadrilateral WXYZ are W(-10, 8), X(-2, -1), Y(0, 0), and Z(3, 7). Translate the quadrilateral 5 units to the right and 8 units down to form quadrilateral W' X' Y' Z'.

Determine the coordinates of each rotated image without graphing.

17. The vertices of triangle ABC are A (5, 3), B (2, 8), and C (-4, 5). Rotate the triangle about the origin 90° counterclockwise to form triangle A' B' C'.

The vertices of triangle A' B' C' are A' (-3, 5), B' (-8, 2), and <math>C' (-5, -4).

18. The vertices of rectangle *DEFG* are D(-7, 1), E(-7, 8), F(1, 8), and G(1, 1). Rotate the rectangle about the origin 180° counterclockwise to form rectangle D' E' F' G'.

- **19.** The vertices of parallelogram HJKL are H(2, -6), J(3, -1), K(7, -1), and L(6, -6). Rotate the parallelogram about the origin 90° counterclockwise to form parallelogram H' J' K' L'.
- **20.** The vertices of trapezoid MNPQ are M (-6, -5), N (0, -5), P (-1, 2), and Q (-4, 2). Rotate the trapezoid about the origin 180° counterclockwise to form trapezoid M' N' P' Q'.
- **21.** The vertices of triangle RST are R (0, 3), S (2, 7), and T (3, -1). Rotate the triangle about the origin 90° counterclockwise to form triangle R' S' T'.
- **22.** The vertices of quadrilateral WXYZ are W(-10, 8), X(-2, -1), Y(0, 0), and Z(3, 7). Rotate the quadrilateral about the origin 180° counterclockwise to form quadrilateral W' X' Y' Z'.

Determine the coordinates of each reflected image without graphing.

23. The vertices of triangle ABC are A (5, 3), B (2, 8), and C (-4, 5). Reflect the triangle over the x-axis to form triangle A' B' C'.

The vertices of triangle A' B' C' are A' (5, -3), B' (2, -8), and C' (-4, -5).

- **24.** The vertices of rectangle *DEFG* are D(-7, 1), E(-7, 8), F(1, 8), and G(1, 1). Reflect the rectangle over the y-axis to form rectangle D' E' F' G'.
- **25.** The vertices of parallelogram HJKL are H(2, -6), J(3, -1), K(7, -1), and L(6, -6). Reflect the parallelogram over the x-axis to form parallelogram H' J' K' L'.
- **26.** The vertices of trapezoid MNPQ are M(-6, -5), N(0, -5), P(-1, 2), and Q(-4, 2). Reflect the trapezoid over the y-axis to form trapezoid M' N' P' Q'.
- **27.** The vertices of triangle RST are R(0, 3), S(2, 7), and T(3, -1). Reflect the triangle over the x-axis to form triangle R' S' T'.
- **28.** The vertices of quadrilateral WXYZ are W(-10, 8), X(-2, -1), Y(0, 0), and Z(3, 7). Reflect the quadrilateral over the y-axis to form quadrilateral W' X' Y' Z'.

Namo	Data

All the Same to You **Congruent Triangles**

Vocabulary

Complete each problem related to the key terms of the lesson.

1. Draw and label a pair of congruent triangles. Write a congruence statement for the triangles.

- a. Identify each pair of congruent line segments in the drawing.
- **b.** Identify each pair of congruent angles in the drawing.
- **c.** Identify each pair of corresponding sides in the drawing.
- d. Identify each pair of corresponding angles in the drawing.

Problem Set

Identify the transformation used to create $\triangle XYZ$ on each coordinate plane. Identify the congruent angles and the congruent sides. Then write a triangle congruence statement.

1.

Triangle BCA was reflected over the x-axis to create triangle XYZ.

 $BC \cong \overline{XY}, \overline{CA} \cong \overline{YZ}, \text{ and } \overline{BA} \cong \overline{XZ}; \angle B \cong \angle X,$ $\angle C \cong \angle Y$, and $\angle A \cong \angle Z$.

 $\triangle BCA \cong \triangle XYZ$

List the corresponding sides and angles using congruence symbols for each pair of triangles represented by the given congruence statement.

11. $\triangle JPM \cong \triangle TRW$

 $\overline{JP} \cong \overline{TR}, \overline{PM} \cong \overline{RW}, \text{ and } \overline{JM} \cong \overline{TW}; \angle J \cong \angle T, \angle P \cong \angle R, \text{ and } \angle M \cong \angle W.$

12. $\triangle AEU \cong \triangle BCD$

13. $\triangle LUV \cong \triangle MTH$

14. $\triangle RWB \cong \triangle VCQ$

15. $\triangle TOM \cong \triangle BEN$

16. $\triangle JKL \cong \triangle RST$

17. $\triangle CAT \cong \triangle SUP$

18. $\triangle TOP \cong \triangle GUN$

13

_			

Name __

Date __

Side-Side-Side **SSS Congruence Theorem**

Vocabulary

Define each term in your own words.

- 1. theorem
- 2. postulate
- 3. Side-Side-Side (SSS) Congruence Theorem

Problem Set

Determine whether each pair of given triangles are congruent by SSS. Use the Distance Formula when necessary.

1.

$$AB = DE = 3$$

$$AC = DF = 7$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$BC = \sqrt{(9-2)^2 + (4-7)^2}$$

$$BC = \sqrt{7^2 + (-3)^2}$$

$$BC = \sqrt{49 + 9}$$

$$BC = \sqrt{58} \approx 7.62$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$EF = \sqrt{(1-8)^2 + (-3-(-6))^2}$$

$$EF = \sqrt{(-7)^2 + 3^2}$$

$$EF = \sqrt{49 + 9}$$

$$EF = \sqrt{58} \approx 7.62$$

$$BC = EF$$

The triangles are congruent by the SSS Congruence Theorem.

Name_

Name_

Name_

Perform the transformation described on each given triangle. Then verify that the triangles are congruent by SSS. Use the Distance Formula when necessary.

7. Reflect $\triangle ABC$ over the *y*-axis to form $\triangle XYZ$. Verify that $\triangle ABC \cong \triangle ABC$ by SSS.

$$AB = XY = 12$$

$$BC = YZ = 5$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$AC = \sqrt{(-4 - (-9))^2 + (-6 - 6)^2}$$

$$AC = \sqrt{5^2 + (-12)^2}$$

$$AC = \sqrt{25 + 144}$$

$$AC = \sqrt{169} = 13$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$XZ = \sqrt{(4-9)^2 + (-6-6)^2}$$

$$XZ = \sqrt{(-5)^2 + (-12)^2}$$

$$XZ = \sqrt{25 + 144}$$

$$XZ = \sqrt{169} = 13$$

$$AC = XZ$$

The triangles are congruent by the SSS Congruence Theorem.

Name _ Date __

8. Rotate $\triangle DEF$ 180° clockwise to form $\triangle QRS$. Verify that $\triangle DEF \cong \triangle QRS$ by SSS.

9. Reflect $\triangle JKL$ over the *x*-axis to form $\triangle MNP$. Verify that $\triangle JKL \cong \triangle MNP$ by SSS.

Name_ Date __

10. Translate $\triangle HMZ$ 10 units to the left and 1 unit down to form $\triangle BNY$. Verify that $\triangle HMZ \cong \triangle BNY$ by SSS.

11. Rotate $\triangle AFP$ 90° counterclockwise to form $\triangle DHW$. Verify that $\triangle AFP \cong \triangle DHW$ by SSS.

Name ______ Date _____

12. Translate $\triangle ACE$ 3 units to the right and 9 units up to form $\triangle JKQ$. Verify that $\triangle ACE \cong \triangle JKQ$ by SSS.

13

Doto		

Side-Angle-Side SAS Congruence Theorem

Vocabulary

Describe how to prove the given triangles are congruent. Use the key terms *included angle* and *Side-Angle-Side Congruence Theorem* in your answer.

Name _

Problem Set

Determine whether each pair of given triangles are congruent by SAS. Use the Distance Formula when necessary.

1. Determine whether $\triangle ABC$ is congruent to $\triangle DEF$ by SAS.

$$AB = DE = 5$$

 $BC = EF = 7$
 $m\angle B = m\angle E = 90^{\circ}$

The triangles are congruent by the SAS Congruence Theorem.

2. Determine whether $\triangle CKY$ is congruent to $\triangle DLZ$ by SAS.

Name_ Date_

3. Determine whether $\triangle FMR$ is congruent to $\triangle JQW$ by SAS.

4. Determine whether $\triangle QRS$ is congruent to $\triangle XYZ$ by SAS.

5. Determine whether $\triangle \textit{JKL}$ is congruent to $\triangle \textit{MNP}$ by SAS.

Name _ Date __

6. Determine whether $\triangle ATV$ is congruent to $\triangle DNP$ by SAS.

Perform the transformation described on each given triangle. Then verify that the triangles are congruent by SAS. Use the Distance Formula when necessary.

7. Reflect $\triangle ABC$ over the *y*-axis to form $\triangle XYZ$. Verify that $\triangle ABC \cong \triangle XYZ$ by SAS.

$$AB = XY = 5$$

$$AC = XZ = 5$$

$$m \angle A = m \angle X = 90^{\circ}$$

The triangles are congruent by the SAS Congruence Theorem.

8. Translate $\triangle DEF$ 11 units to the left and 10 units down to form $\triangle QRS$. Verify that $\triangle DEF \cong \triangle QRS$ by SAS.

Name _

9. Rotate $\triangle JKL$ 180° counterclockwise to form $\triangle MNP$. Verify that $\triangle JKL \cong \triangle MNP$ by SAS.

10. Reflect $\triangle AFP$ over the *y*-axis to form $\triangle DHW$. Verify that $\triangle AFP \cong \triangle DHW$ by SAS.

11. Translate $\triangle ACE$ 4 units to the right and 4 units down to form $\triangle JKQ$. Verify that $\triangle ACE \cong \triangle JKQ$ by SAS.

Name _ Date_

12. Rotate $\triangle BMZ$ 90° counterclockwise to form $\triangle DRT$. Verify that $\triangle BMZ \cong \triangle DRT$ by SAS.

Determine the angle measure or side measure that is needed in order to prove that each set of triangles are congruent by SAS.

- **13.** In $\triangle ART$, AR = 12, RT = 8, and $m \angle R = 70^{\circ}$. In $\triangle BSW$, BS = 12 and $m \angle S = 70^{\circ}$. SW = 8
- **14.** In $\triangle CDE$, CD = 7, DE = 11, In $\triangle FGH$, FG = 7, GH = 11 and $m \angle G = 45^{\circ}$.
- **15.** In $\triangle JKL$, JK = 2, KL = 3, and $m \angle K = 60^{\circ}$. In $\triangle MNP$, NP = 3 and $m \angle N = 60^{\circ}$.
- **16.** In $\triangle QRS$, QS = 6, RS = 4, and $m \angle S = 20^{\circ}$. In $\triangle TUV$, TV = 6 and UV = 4.

17.

18.

Name -

Date _____

19.

7 m 50° G

20.

Determine whether there is enough information to prove that each pair of triangles are congruent by SSS or SAS. Write the congruence statements to justify your reasoning.

21.
$$\triangle MNP \stackrel{?}{\cong} \triangle PQM$$

22. △*WXY*
$$\stackrel{?}{\cong}$$
 △*ZYX*

The triangles are congruent by SSS.

$$\overline{MN} \cong \overline{PQ}$$

$$\overline{NP} \cong \overline{QM}$$

$$\overline{MP} \cong \overline{PM}$$

Name_

26. △*MAT*
$$\stackrel{?}{\cong}$$
 △*MHT*

28. △*ABC*
$$\stackrel{?}{\cong}$$
 △*EDC*

13

Date		

You Shouldn't Make Assumptions **Angle-Side-Angle Congruence Theorem**

Vocabulary

Describe how to prove the given triangles are congruent. Use the key terms included side and Angle-Side-Angle Congruence Theorem in your answer.

Name -

Problem Set

Determine whether each pair of given triangles are congruent by ASA.

1. Determine whether $\triangle ABC$ is congruent to $\triangle DEF$ by ASA.

$$m \angle B = m \angle E = 90^{\circ}$$

 $m \angle C = m \angle F = 45^{\circ}$
 $BC = EF = 5$

The triangles are congruent by the ASA Congruence Theorem.

2. Determine whether $\triangle NPQ$ is congruent to $\triangle RST$ by ASA.

3. Determine whether $\triangle AGP$ is congruent to $\triangle BHQ$ by ASA.

4. Determine whether $\triangle CKY$ is congruent to $\triangle DLZ$ by ASA.

5. Determine whether $\triangle FMR$ is congruent to $\triangle JQW$ by ASA.

6. Determine whether $\triangle GHJ$ is congruent to $\triangle KLM$ by ASA.

Perform the transformation described on each given triangle. Then verify that the triangles are congruent by ASA.

7. Reflect $\triangle ABC$ over the *y*-axis to form $\triangle XYZ$. Verify that $\triangle ABC \cong \triangle XYZ$ by SAS.

$$m \angle C = m \angle Z = 90^{\circ}$$

$$m \angle A = m \angle X = 63^{\circ}$$

$$AC = XZ = 3$$

The triangles are congruent by the ASA Congruence Theorem.

8. Rotate $\triangle DEF$ 90° counterclockwise to form $\triangle QRS$. Verify that $\triangle DEF \cong \triangle QRS$ by SAS.

9. Translate $\triangle HMZ$ 6 units to the right and 10 units up to form $\triangle BNY$. Verify that $\triangle HMZ \cong \triangle BNY$ by ASA.

10. Reflect $\triangle AFP$ over the *y*-axis to form $\triangle DHW$. Verify that $\triangle AFP \cong \triangle DHW$ by ASA.

Name _

_ Date _____

11. Rotate $\triangle ACE$ 180° counterclockwise to form $\triangle JKQ$. Verify that $\triangle ACE \cong \triangle JKQ$ by SAS.

12. Reflect $\triangle JKL$ over the *x*-axis to form $\triangle MNP$. Verify that $\triangle JKL \cong \triangle MNP$ by ASA.

Determine the angle measure or side measure that is needed in order to prove that each set of triangles are congruent by ASA.

- **13.** In $\triangle ADZ$, $m \angle A = 20^{\circ}$, AD = 9, and $m \angle D = 70^{\circ}$. In $\triangle BEN$, BE = 9 and $m \angle E = 70^{\circ}$. $m \angle B = 20^{\circ}$
- **14.** In $\triangle CUP$, $m \angle U = 45^{\circ}$, and $m \angle P = 55^{\circ}$, In $\triangle HAT$, AT = 14, $m \angle A = 45^{\circ}$. and $m \angle T = 55^{\circ}$.
- **15.** In $\triangle HOW$, $m \angle H = 10^{\circ}$, HW = 3, and $m \angle W = 60^{\circ}$. In $\triangle FAR$, FR = 3 and $m \angle F = 10^{\circ}$.
- **16.** In $\triangle DRY$, $m \angle D = 100^\circ$, DR = 25, and $m \angle R = 30^\circ$, In $\triangle WET$, $m \angle W = 100^\circ$ and $m \angle E = 30^\circ$.
- **17.** *B*

40°

30°

19.

13

Date	

Ahhhhh ... We're Sorry We Didn't Include You! Angle-Angle-Side Congruence Theorem

Vocabulary

Name _

Describe how to prove the given triangles are congruent. Use the key terms *non-included side* and *Angle-Angle-Side Congruence Theorem* in your answer.

Problem Set

Determine whether each set of given triangles are congruent by AAS.

1. Determine whether $\triangle ABC$ is congruent to $\triangle DEF$ by AAS.

Methods may vary.

$$m \angle A = m \angle D = 45^{\circ}$$

$$m \angle B = m \angle E = 45^{\circ}$$

$$BC = EF = 7$$

The triangles are congruent by the AAS Congruence Theorem.

2. Determine whether $\triangle GHJ$ is congruent to $\triangle KLM$ by AAS.

3. Determine whether $\triangle AGP$ is congruent to $\triangle BHQ$ by AAS.

4. Determine whether $\triangle CKY$ is congruent to $\triangle DLZ$ by AAS.

5. Determine whether $\triangle FMR$ is congruent to $\triangle JQW$ by AAS.

6. Determine whether $\triangle NPQ$ is congruent to $\triangle RST$ by AAS.

Date_ Name _

Perform the transformation described on each given triangle. Then verify that the triangles are congruent by AAS.

7. Reflect $\triangle ABC$ over the *y*-axis to form $\triangle XYZ$. Verify that $\triangle ABC \cong \triangle XYZ$ by AAS.

Methods may vary.

$$m \angle B = m \angle Y = 76^{\circ}$$

$$m \angle C = m \angle Z = 90^{\circ}$$

$$AC = XZ = 12$$

The triangles are congruent by the AAS Congruence Theorem.

8. Translate $\triangle DEF$ 11 units to the left and 11 units down to form $\triangle QRS$. Verify that $\triangle DEF \cong \triangle QRS$ by AAS.

9. Rotate $\triangle JKL$ 180° counterclockwise to form $\triangle MNP$. Verify that $\triangle JKL \cong \triangle MNP$ by AAS.

10. Translate $\triangle CUP$ 9 units to the left and 4 units up to form $\triangle JAR$. Verify that $\triangle CUP \cong \triangle JAR$ by AAS.

Name ___

12. Rotate $\triangle ACE$ 270° counterclockwise to form $\triangle JKQ$. Verify that $\triangle ACE \cong \triangle JKQ$ by AAS.

- Determine the angle measure or side measure that is needed in order to prove that each set of triangles are congruent by AAS.
- **13.** In $\triangle ANT$, $m \angle A = 30^{\circ}$, $m \angle N = 60^{\circ}$, and NT = 5. In $\triangle BUG$, $m \angle U = 60^{\circ}$ and UG = 5. $m \angle B = 30^{\circ}$
- **14.** In $\triangle BCD$, $m \angle B = 25^{\circ}$, and $m \angle D = 105^{\circ}$. In $\triangle RST$, RS = 12, $m \angle R = 25^{\circ}$, and $m \angle T = 105^{\circ}$.
- **15.** In $\triangle EMZ$, $m \angle E = 40^{\circ}$, EZ = 7, and $m \angle M = 70^{\circ}$. In $\triangle DGP$, DP = 7 and $m \angle D = 40^{\circ}$.
- **16.** In $\triangle BMX$, $m \angle M = 90^{\circ}$, BM = 16, and $m \angle X = 15^{\circ}$. In $\triangle CNY$, $m \angle N = 90^{\circ}$ and $m \angle Y = 15^{\circ}$.

Name -Date.

17.

18.

19.

Determine whether there is enough information to prove that each pair of triangles are congruent by ASA or AAS. Write the congruence statements to justify your reasoning.

21. $\triangle ABD \stackrel{?}{\cong} \triangle CBD$

The triangles are congruent by AAS.

$$\angle ADB \cong \angle CDB$$

 $\overline{BD} \cong \overline{BD}$

22. △*EFG* $\stackrel{?}{\cong}$ △*HJK*

24. ∧RST ≈ ∧WZT

Name_ Date.

25. △*BDM* $\stackrel{?}{\cong}$ △*MDH*

26. △*F*G*H* $\stackrel{?}{=}$ △*JH*G

27. △*DFG*
$$\stackrel{?}{\cong}$$
 △*JMT*

13