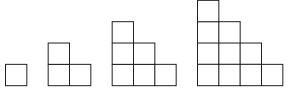
Name ____

_____ Date _____

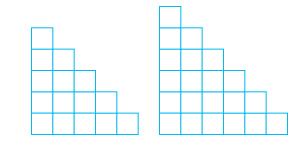
Is There a Pattern Here? Recognizing Patterns and Sequences

Vocabulary

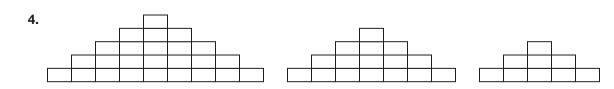
Choose the term that best completes each statement.

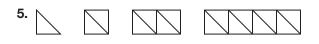

sequence term of a sequence infinite sequence finite sequence

- 1. A sequence which terminates is called a(n) ______.
- 2. A(n) ______ is an individual number, figure, or letter in a sequence.
- **3.** A(n) ______ is a pattern involving an ordered arrangement of numbers, geometric figures, letters, or other objects.
- 4. A sequence which continues forever is called a(n) ______.


Problem Set

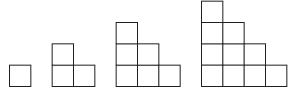
Describe each given pattern. Draw the next two figures in each pattern.



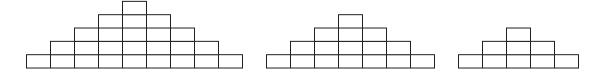

The second figure has 2 more squares than the first, the third figure has 3 more squares than the second, and the fourth figure has 4 more squares than the third.

Name _

6.


© 2012 Carnegie Learning

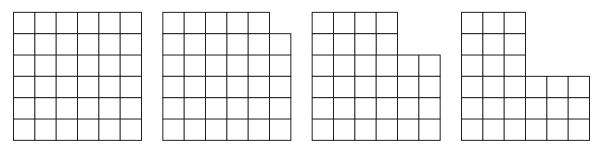
		l	


Date _____

Write a numeric sequence to represent each given pattern or situation.

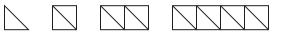
- 7. The school cafeteria begins the day with a supply of 1000 chicken nuggets. Each student that passes through the lunch line is given 5 chicken nuggets. Write a numeric sequence to represent the total number of chicken nuggets remaining in the cafeteria's supply after each of the first 6 students pass through the line. Include the number of chicken nuggets the cafeteria started with. 1000, 995, 990, 985, 980, 975, 970
- **8.** Write a numeric sequence to represent the number of squares in each of the first 7 figures of the pattern.

- **9.** Sophia starts a job at a restaurant. She deposits \$40 from each paycheck into her savings account. There was no money in the account prior to her first deposit. Write a numeric sequence to represent the amount of money in the savings account after Sophia receives each of her first 6 paychecks.
- **10.** Write a numeric sequence to represent the number of blocks in each of the first 5 figures of the pattern.



- **11.** Kyle is collecting canned goods for a food drive. On the first day he collects 1 can. On the second day he collects 2 cans. On the third day he collects 4 cans. On each successive day, he collects twice as many cans as he collected the previous day. Write a numeric sequence to represent the total number of cans Kyle has collected by the end of each of the first 7 days of the food drive.
- **12.** Write a numeric sequence to represent the number of line segments in each of the first 7 figures of the pattern.

13. For her 10th birthday, Tameka's grandparents give her a set of 200 stamps. For each birthday after that, they give her a set of 25 stamps to add to her stamp collection. Write a numeric sequence consisting of 7 terms to represent the number of stamps in Tameka's collection after each of her birthdays starting with her 10th birthday.


Name	Date

14. Write a numeric sequence to represent the number of squares in each of the first 6 figures of the pattern.

15. Leonardo uses 3 cups of flour in each cake he bakes. He starts the day with 50 cups of flour. Write a numeric sequence to represent the amount of flour remaining after each of the first 7 cakes Leonardo bakes. Include the amount of flour Leonardo started with.

16. Write a numeric sequence to represent the number of triangles in each of the first 7 figures of the pattern.

Name _____

_____ Date _____

The Password Is . . . Operations! Arithmetic and Geometric Sequences

Vocabulary

Describe each given sequence using the terms arithmetic sequence, common difference, geometric sequence, and common ratio as they apply.

1. 10, 20, 30, 40, . . .

2. 1, 2, 4, 8, . . .

Problem Set

Determine the common difference for each arithmetic sequence.

1. 1, 5, 9, 13,	2. 10, 3, -4, -11,
d = 5 - 1	
d = 4	
3. 10.5, 13, 15.5, 18,	4. $\frac{1}{3}, \frac{2}{3}, 1, \frac{4}{3}, \ldots$

5. 95, 91.5, 88, 84.5, . . .

6. 170, 240, 310, 380, . . .

- **7.** 1250, 1190, 1130, 1070, . . . **8.** -4.8, -6.0, -7.2, -8.4, . . .
- **9.** $8\frac{1}{2}$, 9, $9\frac{1}{2}$, 10, ... **10.** -28, -13, 2, 17, ...

Determine the common ratio for each geometric sequence.

11. 5, 10, 20, 40, ...
 12. 2, 8, 32, 128, ...

 $r = 10 \div 5$ r = 2

4

-24, . . . **14.** 800, 400, 200, 100, . . .

- **15.** 10, -30, 90, -270, ... **16.** 64, -32, 16, -8, ...
- **17.** 5, 40, 320, 2560, . . . **18.** 45, 15, 5, $\frac{5}{3}$, . . .
- **19.** 0.2, -1, 5, -25, ... **20.** 150, 30, 6, 1.2, ...

Name	Date
Determine the next 3 terms in each arithmetic sequence.	
21. 8, 14, 20, 26, <u>32</u> , <u>38</u> , <u>44</u> ,	
22. 90, 75, 60, 45,,,, ,	
23. -24, -14, -4, 6,,,,	
24. $\frac{3}{5}, \frac{4}{5}, 1, \frac{6}{5}, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots$	
25. 20, 11, 2, -7,,,,	
26. 12, 16.5, 21, 25.5,,,,	
27. -101, -112, -123, -134,,,,	
28. 3.8, 5.1, 6.4, 7.7,,,,	
29. -500, -125, 250, 625,,,	
30. 24.5, 20.7, 16.9, 13.1,,,,	
Determine the next 3 terms in each geometric sequence.	
31. 3, 9, 27, 81, <u>243</u> , <u>729</u> , <u>2187</u> ,	
32. 512, 256, 128, 64,,,,	
33. 5, -10, 20, -40,,,	
34. 3000, 300, 30, 3,,,,	
35. 2, -2, 2, -2,,,,	
36. 0.2, 1.2, 7.2, 43.2,,,,	
37. -8000, 4000, -2000, 1000,,,, ,	
38. 0.1, 0.4, 1.6, 6.4,,,,,	
39. 156.25, 31.25, 6.25, 1.25,,,,	
40. 7, -21, 63, -189,,,,	

Determine whether each given sequence is arithmetic, geometric, or neither. For arithmetic and geometric sequences, write the next 3 terms of the sequence.

41. 4, 8, 12, 16, . . .

The sequence is arithmetic. The next 3 terms are 20, 24, and 28.

42. 2, 4, 7, 11, . . .

43. 3, 12, 48, 192, . . .

44. 9, -18, 36, -72, . . .

45. 1.1, 1.11, 1.111, 1.1111, . . .

4

46. 4, -8, -20, -32, . . .

47. 7.5, 11.6, 15.7, 19.8, . . .

48. 1, -4, 9, -16, . . .

49. 5, -20, 80, -320, . . .

50. 9.8, 5.6, 1.4, -2.8, . . .

Name _

Date _

The Power of Algebra Is a Curious Thing Using Formulas to Determine Terms of a Sequence

Vocabulary

Choose the term that best completes each statement.

index	explicit formula	recursive formula

- **1.** A(n) ______ expresses each term of a sequence based on the preceding term of the sequence.
- 2. The ______ is the position of a term in a sequence.
- **3.** A(n) ______ calculates each term of a sequence using the term's position in the sequence.

Problem Set

 $a_{20} = 58$

Determine each unknown term in the given arithmetic sequence using the explicit formula.

- 1. Determine the 20th term of the sequence 1, 4, 7, ... $a_n = a_1 + d(n - 1)$ $a_{20} = 1 + 3(20 - 1)$ $a_{20} = 1 + 3(19)$ $a_{20} = 1 + 57$
- **2.** Determine the 30th term of the sequence $-10, -15, -20, \ldots$

- **3.** Determine the 25th term of the sequence 3.3, 4.4, 5.5, . . .
- **4.** Determine the 50th term of the sequence 100, 92, 84, . . .

- **5.** Determine the 42nd term of the sequence 12.25, 14.50, 16.75, . . .
- **6.** Determine the 28th term of the sequence -242, -251, -260, . . .

- **7.** Determine the 34th term of the sequence -76.2, -70.9, -65.6, . . .
- **8.** Determine the 60th term of the sequence 10, 25, 40, . . .

- **9.** Determine the 57th term of the sequence 672, 660, 648, . . .
- **10.** Determine the 75th term of the sequence $-200, -100, 0, \ldots$

Determine each unknown term in the given geometric sequence using the explicit formula. Round the answer to the nearest hundredth when necessary.

- **11.** Determine the 10th term of the sequence
 - 3, 6, 12, ... $g_n = g_1 \cdot r^{n-1}$ $g_{10} = 3 \cdot 2^{10-1}$ $g_{10} = 3 \cdot 2^9$ $g_{10} = 3 \cdot 512$ $g_{10} = 1536$

4

12. Determine the 15th term of the sequence $1, -2, 4, \ldots$

Name	Date

- **13.** Determine the 12th term of the sequence 5, 15, 45, . . .
- **14.** Determine the 16th term of the sequence 9, 18, 36, . . .

- **15.** Determine the 20th term of the sequence 0.125, -0.250, 0.500, . . .
- **16.** Determine the 18th term of the sequence 3, 9, 27, . . .

- **17.** Determine the 14th term of the sequence -4, 8, -16, ...
- **18.** Determine the 10th term of the sequence 0.1, 0.5, 2.5, . . .

- **19.** Determine the 12th term of the sequence 4, 5, 6.25, . . .
- **20.** Determine the 10th term of the sequence $5, -25, 125, \ldots$

Determine whether each sequence is arithmetic or geometric. Then, use the appropriate recursive formula to determine the unknown term(s) in the sequence.

- **21.** 4, 8, 16, 32, <u>64</u>, ... The sequence is geometric. $g_n = g_{n-1} \cdot r$ $g_5 = g_4 \cdot 2$
 - $g_5 = 32 \cdot 2$ $g_5 = 64$

22. 16, 30, 44, 58, _____, ...

23. 2, -6, 18, _____, 162, _____, ...

24. 7.3, 9.4, 11.5, _____, 15.7, _____, ...

25. 320, 410, 500, _____, ____,

Name	Date

26. 7, 21, 63, _____, 567, _____, . . .

27. -68, -83, -98, _____, ____,

28. -5, 20, -80, _____, ____,

Determine the unknown term in each arithmetic sequence using a graphing calculator.

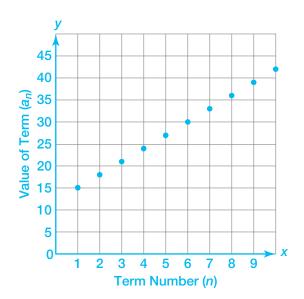
- **29.** Determine the 20th term of the sequence 30, 70, 110, . . .
 - *a*₂₀ = 790
- **31.** Determine the 30th term of the sequence 16, 24, 32, . . .
- **30.** Determine the 25th term of the sequence $-25, -50, -75, \ldots$
- **32.** Determine the 35th term of the sequence 120, 104, 88, . . .

- **33.** Determine the 30th term of the sequence 350, 700, 1050, . . .
- **34.** Determine the 22nd term of the sequence $0, -45, -90, \ldots$
- **35.** Determine the 24th term of the sequence
 36. Determine the 36th term of the sequence

 6.8, 9.5, 12.2, ...
 189, 200, 211, ...
- **37.** Determine the 20th term of the sequence 2500, 3100, 3700, . . .
- **38.** Determine the 50th term of the sequence $-97, -94, -91, \ldots$

Name _

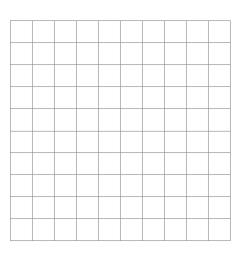
Date _____


Thank Goodness Descartes Didn't Drink Some Warm Milk! Graphs of Sequences

Problem Set

Complete the table for each given sequence then graph each sequence on the coordinate plane.

1.
$$a_n = 15 + 3(n - 1)$$


Term Number (n)	Value of Term (a _n)
1	15
2	18
3	21
4	24
5	27
6	30
7	33
8	36
9	39
10	42

2.
$$g_n = 3 \cdot 2^{n-1}$$

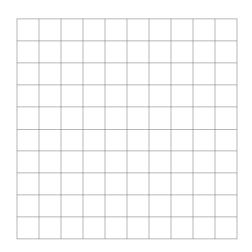
© 2012 Carnegie Learning

Term Number (n)	Value of Term (g_n)
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

Term Number (n)	Value of Term (a_n)
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

4. $g_n = 3 \cdot (-2)^{n-1}$

Term Number (n)	Value of Term (g_n)
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	


Name _____

_____ Date _____

page 3

5. $a_n = -24 + 6(n-1)$

Term Number (n)	Value of Term (a_n)
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

6. $g_n = -1 \cdot 2^{n-1}$

© 2012 Carnegie Learning

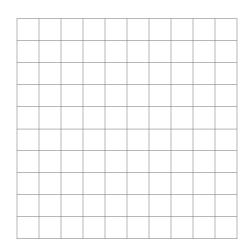
Value of Term (g_n)

7. $a_n = 75 + 25(n - 1)$

Term Number (n)	Value of Term (a_n)
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

8. $g_n = 32,000 \cdot (0.5)^{n-1}$
--

Term Number (n)	Value of Term (g_n)
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	


Name _____

Date

page 5

9. $a_n = 400 + (-80)(n - 1)$

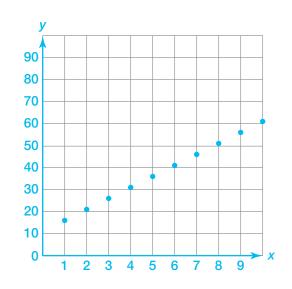
Term Number (n)	Value of Term (a_n)
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

10. $g_n = 2 \cdot (-3)^{n-1}$

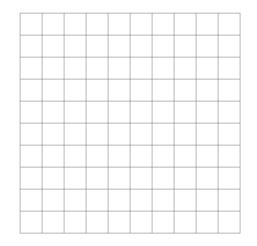
© 2012 Carnegie Learning

Term Number (n)	Value of Term (g_n)
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

Name _


Date ____

Well, Maybe It *Is* a Function! Sequences and Functions


Problem Set

Write each arithmetic sequence as a linear function. Graph the function for all integers, *n*, such that $1 \le n \le 10$.

1.
$$a_n = 16 + 5(n - 1)$$

 $a_n = 16 + 5(n - 1)$
 $f(n) = 16 + 5(n - 1)$
 $f(n) = 16 + 5n - 5$
 $f(n) = 5n + 16 - 5$
 $f(n) = 5n + 11$

2. $a_n = -50 + 15(n-1)$

3.
$$a_n = 100 + (-20)(n - 1)$$

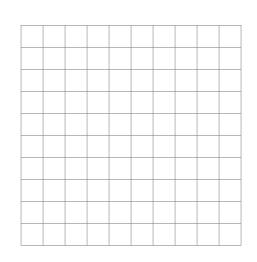
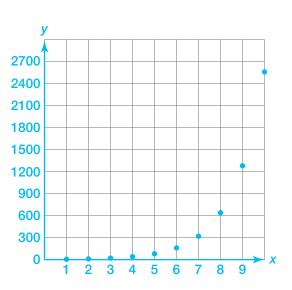

4.
$$a_n = -9 + (-7)(n-1)$$

		Image: Section of the sectio	Image: Section of the sectio	Image: Sector	Image: Sector of the sector	Image: Sector of the sector

5.
$$a_n = 550 + (-50)(n-1)$$


Name _

6.
$$a_n = 3 + \left(-\frac{3}{5}\right)(n-1)$$

Write each geometric sequence as an exponential function. Graph the function for all integers, *n*, such that $1 \le n \le 10$.

7.
$$g_n = 5 \cdot 2^{n-1}$$

 $g_n = 5 \cdot 2^{n-1}$
 $f(n) = 5 \cdot 2^{n-1}$
 $f(n) = 5 \cdot 2^n \cdot 2^{-1}$
 $f(n) = 5 \cdot 2^{-1} \cdot 2^n$
 $f(n) = 5 \cdot \frac{1}{2} \cdot 2^n$
 $f(n) = \frac{5}{2} \cdot 2^n$

Date _

8. $g_n = -3 \cdot 3^{n-1}$

9. $g_n = 20 \cdot 2.5^{n-1}$

_	 	 	 	 	
┢					

10. $g_n = 900 \cdot 0.9^{n-1}$

Name _____

_____ Date _____

11. $g_n = -0.5 \cdot 2^{n-1}$

12. $g_n = 1250 \cdot 1.25^{n-1}$
