F-IF.C: Skills Practice Problems

1.3 #7-12 7. $f(x) = \frac{2}{3}x + 2$ 8. $f(x) = -x^2$ Graph C Graph A Graph B Graph C Graph B **11.** f(x) = 2x - 6, where x is an integ **12.** f(x) = -4

1.4 #1-10

Choose the appropriate function family or families to complete each sentence based on the given characteristic(s).

linear functions quadratic functions exponential functions linear absolute value functions

- 1. The graph of this function family is a straight line. The function family is _____
- 2. The graph of this function family has an increasing interval and a decreasing interval. The function family is ______.
- 3. The graph of this function family has an absolute minimum. The function family is
- 4. The graph of this function family in decreasing over the entire domain. The function family is
- 5. The graph of this function family forms a V shape. The function family is _____
- The graph of this function family has an increasing interval and a decreasing interval and forms a U shape. The function family is ______.
- The graph of this function family has an absolute maximum or absolute minimum and is made up straight lines. The function family is ______.
- 9. The graph of this function family is made up straight lines and does not have an absolute maximum or absolute minimum. The function family is ______.
- The graph of this function family decreases over the entire domain and is a smooth curve.
 The function family is _______.

1.4 #17-22

Choose the function family represented by each graph.

linear function	quadratic function	exponential function	
linear absolute value function	linear piecewise function		ı

17. 18. 21.

The graph represents a quadratic function.

19. y

1.4 #11-16

Create an equation and sketch a graph for a function with each set of given characteristics. Use values that are any real numbers between -10 and 10.

- 11. Create an equation and sketch a graph that:
 - is a smooth curve,

 - has a minimum, and
 - is quadratic.

- 12. Create an equation and sketch a graph that:
 - is linear,
 - is discrete, and
 - is decreasing across the entire domain.

- 13. Create an equation and sketch a graph that:
 - is a smooth curve,
 - is increasing across the entire domain,
 - is continuous, and
 - is exponential.

- 14. Create an equation and sketch a graph that:
 - has a maximum,
 - · is continuous, and
 - is a linear absolute value function.

- 15. Create an equation and sketch a graph that:
 - is linear,
 - is continuous,
 - is neither increasing nor decreasing across the entire domain, and
 - · does not pass through the origin.

- 16. Create an equation and sketch a graph that:
 - is discrete,
 - has a maximum,
 - · does not pass through the origin, and
 - is quadratic.

24. $f(x) = -2 \cdot \frac{1}{2}^x$

x	f(x)
-2	
-1	
0	
1	
2	

5.2 #19-24

Complete each table and graph the function. Identify the x-intercept, y-intercept, asymptote, domain, range, and interval(s) of increase or decrease for the function.

19.
$$f(x) = 2^x$$

x	f(x)
-2	<u>1</u>
-1	1/2
0	1
1	2
2	4

x-intercept: none

y-intercept: (0, 1)

asymptote: y = 0

domain: all real numbers

range: y > 0

interval(s) of increase or decrease: increasing over the entire domain

20. $f(x) = 4^x$

x	f(x)
-2	
-1	
0	
1	
2	

21.
$$f(x) = \frac{1}{3}^x$$

х	f(x)
-2	
-1	
0	
1	
2	

22. $f(x) = \frac{1}{4}^x$

-	
x	f(x)
-2	
-1	
0	
1	
2	

23. $f(x) = -2 \cdot 2^x$

x	f(x)
-2	
-1	
0	
1	
2	

5.3 #31-38

Each coordinate plane shows the graph of f(x). Sketch the graph of g(x).

31.
$$g(x) = f(x) + 2$$

33.
$$g(x) = f(x) - 2$$

35.
$$g(x) = f(x + 3)$$

37.
$$g(x) = f(x) + 5$$

32.
$$g(x) = f(x) + 4$$

34.
$$g(x) = f(x - 3)$$

36.
$$g(x) = f(x - 4)$$

38.
$$g(x) = f(x + 5)$$

5.4 #13-18

Each coordinate plane shows the graph of f(x). Sketch the graph of g(x).

13.
$$g(x) = -f(x)$$

15.
$$g(x) = f(-x)$$

17.
$$g(x) = -f(x)$$

14.
$$g(x) = f(-x)$$

16.
$$g(x) = -f(x)$$

18.
$$g(x) = f(-x)$$

